1 Symmetry

1.1 Concepts

1. A function is called **even** if f(x) = f(-x) and **odd** if f(x) = -f(-x). For an even function $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$. For an odd function, $\int_{-a}^{a} f(x)dx = 0$.

1.2 Problems

- 2. **TRUE** False An even function is symmetric across the y axis.
- 3. True **FALSE** An odd function is symmetric across the x axis.
- 4. Is $f(x) = x^3 + x$ even, odd, or neither?

Solution: Plugging in -x we get $(-x)^3 + (-x) = -x^3 - x = -(x^3 + x) = -f(x)$ so the function is odd.

5. Is $f(x) = \sqrt{1 - x^4}$ even, odd, or neither?

Solution: $f(-x) = \sqrt{1 - (-x)^4} = \sqrt{1 - x^4} = f(x)$ so even.

6. Is $f(x) = x^5 + x^2$ even, odd, or neither?

Solution: $f(-x) = (-x)^5 + (-x)^2 = -x^5 + x^2$ so neither.

7. Is $f(x) = \frac{x}{x^2 + 1}$ even, odd, or neither?

Solution: $f(-x) = \frac{-x}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} = -f(x)$ so odd.

2 Integration by Parts

- 8. True **FALSE** Integration by parts will automatically give the antiderivative of a function.
- 9. Find $\int \arctan(x) dx$.

Solution: For choosing a u, we should look for logarithms and inverse trig functions first. Then, we should look for polynomials, then trig functions and finally exponential functions. So, we set $u = \arctan(x)$ and set dv as the rest or dv = 1dx. Thus, we have that

$$\int \arctan(x)dx = uv - \int vdu = x\arctan(x) - \int \frac{x}{1+x^2}dx.$$

We can solve the last one with a u substitution $u=1+x^2$ so du=2xdx and $xdx=\frac{du}{2}$ so

$$\int \arctan(x)dx = x \arctan x - \frac{1}{2} \int \frac{du}{u} = x \arctan x - \frac{\ln(1+x^2)}{2} + C.$$

10. Find $\int \sin(x) \cos(x) dx$.

Solution: We can use u substitution but also use integration by parts. Let $u = \sin(x)$ and $dv = \cos(x)dx$ so $v = \sin(x)$. Thus

$$\int \sin(x)\cos(x)dx = \sin^2(x) - \int \cos(x)\sin(x)dx.$$

So we have that

$$2\int \sin(x)\cos(x)dx = \sin^2(x) + C \implies \int \sin(x)\cos(x)dx = \frac{\sin^2(x)}{2} + C.$$

11. Integrate $\int x \ln x dx$.

Solution: Let $u = \ln x$ and dv = xdx so

$$\int x \ln x dx = \frac{x^2 \ln x}{2} - \int \frac{x^2}{2} \frac{1}{x} dx = \frac{x^2 \ln x}{2} - \int \frac{x}{2} dx = \frac{x^2 \ln x}{2} - \frac{x^2}{4} + C.$$

12. Integrate $\int \frac{\ln x}{x^5} dx$.

Solution: Let $u = \ln x$ and $dv = x^{-5}dx$ so $v = \frac{-x^{-4}}{4}$ and so

$$\int \frac{\ln x}{x^5} dx = \frac{-\ln x}{4x^4} - \int \frac{-1}{4x^4} \cdot \frac{1}{x} dx = \frac{-\ln x}{4x^4} - \int \frac{-1}{4x^5} dx = \frac{-\ln x}{4x^4} - \frac{1}{16x^4} + C.$$

13. Integrate $\int (\ln x)^2 dx$.

Solution: Let $u = (\ln x)^2 dx$ and dv = 1 dx so v = x. Then $du = \frac{2 \ln x}{x} dx$ and

$$\int (\ln x)^2 dx = x(\ln x)^2 - \int \frac{2x \ln x}{x} dx = x(\ln x)^2 - 2 \int \ln x dx$$

$$= x(\ln x)^2 - 2\left[x\ln x - \int x/xdx\right] = x(\ln x)^2 - 2x\ln x + 2x + C.$$

14. Integrate $\int x(\sin x + \cos x)dx$.

Solution: Let u = x and $dv = (\sin(x) + \cos(x))dx$ so du = dx and $v = -\cos(x) + \sin(x)$. So

$$\int x(\sin(x) + \cos(x))dx = x(\sin(x) - \cos(x)) - \int \sin(x) - \cos(x)dx$$
$$= x(\sin(x) - \cos(x)) - (-\cos(x) - \sin(x)) + C.$$

15. Integrate $\int_{\tan(1)}^{\tan(e)} \frac{\ln(\arctan(x))}{1+x^2} dx.$

Solution: u sub with $u = \arctan(x)$ so $du = \frac{dx}{1+x^2}$ and our integral becomes

$$\int_{1}^{e} \ln(u) du = u \ln(u) \mid_{1}^{e} - \int_{1}^{e} du = e \ln e - 1 \ln 1 - (e - 1) = e \ln e - e + 1 = 1.$$

16. Integrate $\int_{\pi/4}^{\arctan(e)} \sec^2(x) \ln(\tan(x)) dx$..

Solution: u sub with $u = \tan(x)$ and $du = \sec^2(x)dx$ to get

$$\int_{1}^{e} \ln(u) du = e \ln e - e + 1 = 1.$$